Modelling the disappearance of floating algal wrack and its impact on marine invertebrate biodiversity in a future ocean

Lauren Cole

Trent Penman, Andy Davis University of Wollongong

Institute for Conservation Biology & Environmental Management

What is "wrack"?

A fragment of seaweed that has become detached from its location and is free-floating on the surface of the ocean

Wrack plays multiple key roles for a wide variety of species

• Serves as an oasis

• Provides attachment, protection and a food source

- Distances travelled by individuals rafting on wrack are typically greater
- Expedites colonization of biota in isolated areas

A wide variety of species call wrack home

What if wrack abundance were to decrease?

Phyllospora comosa

Has already disappeared from more than 70 kilometres of New South Wales Coastline

Phyllospora comosa

- Important habitat-forming macroalga
- Endemic to eastern Australia and Tasmania's subtidal reefs
- Ranges from extremely patchy to 100% cover
- Gas-filled bladders aid in floatation, allowing for long distance dispersal

High susceptibility to anthropogenic factors

Urbanization and climate change could continue to decrease the amount of *Phyllospora* and associated wrack

Climate impact on the marine environment

Poloczanska, E. S., R. C. Babcock, A. Butler, A. J. Hobday, O. Hoegh-Guldberg, T. J. Kunz, R. Matear, D. Milton, T. A. Okey and A. J. Richardson (2007). Climate Change And Australian Marine Life. Oceanography and Marine Biology Annual Review 45: 409-480.

Aims of my Bayes Net

- Use field data and climate change predictions to model:
 - The past and future abundance of *Phyllospora comosa*
 - The relative abundance *P. comosa* wrack present under future conditions
 - The changes in species abundance and diversity
 - The financial impact of climate change on key commercial species such as *Portunus spp*.

Human activities' impact on marine systems

Predictions for New South Wales and Tasmania

- Southern advance of the EAC results in higher sea surface temperatures
- Struggle to enact policy to protect vulnerable marine habitats
- Increased reproductive success for aggressive herbivores *like C. rodgersii*
- Decreased macroalgal growth rates and more frequent dieback events

Attached Phyllospora cover

Influenced by increasing urbanization

Influenced by increased urchin grazing

Invertebrate Abundance & Diversity

Invertebrate abundance & diversity

Invertebrate Abundance & Diversity

Island Biogeography theory

- Proximity of pieces of wrack to one another influences the diversity
- Large assemblages enable greater diversity
 - -greater number of resources & available niches

-by chance just because they are larger

- Not influenced by amount of wrack
- community is often dominated by one or two species

Invertebrate Abundance and Diversity

Pre-Colonization

Financial impact on *Portunus* spp.

Financial impact on Portunus spp.

Megalopa >5 mm

Australia-Wide Fishery

- Annual catch often in excess of 2,300 tonnes
- Valued at over \$20 million per year

1st Juvenile Stage

The NSW Fishery

- Catch varies widely but averages 188.3 tonnes
- Valued at \$1.65 million per year

Portunus pelagicus

Portunus sanguinolentus

Financial impact on Portunus spp.

- Pre-colonization stock levels would have had an annual value of \$1.8 million
- Loss of \$185,000 per year by 2213 if it experiences the expected 12% decline

Current Shortcomings

- Lack of directly related data available involving the relationship between environmental factors and amount *P. comosa* specifically
- Relationship between amount of wrack and survival rates is unknown
- Other factors influence stock size of *Portunus* spp. (this model may actually predict the "best case" scenario)

Future Direction

- Incorporate more field data and expand the factors included
- Shift focus to modelling:

 the optimization of biodiversity
 the relationship between biodiversity and economic gain
 - -the impact of environmental protection status

Thank You!

Supervisor: Andy Davis

Trent Penman

All of my field volunteers

The ABNMS for this opportunity!

SERVATION BIOLOGY & ENVIRONMENTAL MANAGEMENT

